这项研究提供了一个新颖的框架,以根据开源数据估算全球城市的公共交通巴士的经济,环境和社会价值。电动巴士是替代柴油巴士以获得环境和社会利益的引人注目的候选人。但是,评估总线电气化价值的最先进模型的适用性受到限制,因为它们需要可能难以购买的总线运营数据的细粒和定制数据。我们的估值工具使用通用过境饲料规范,这是全球运输机构使用的标准数据格式,为制定优先级排序策略提供了高级指导,以使总线机队电气化。我们开发了物理知识的机器学习模型,以评估每种运输途径的能耗,碳排放,健康影响以及总拥有成本。我们通过对大波士顿和米兰大都会地区的公交线路进行案例研究来证明我们的工具的可扩展性。
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
金属有机框架(MOF)是一类模块化的多孔晶体材料,具有巨大的革命性应用,例如储气,分子分离,化学感应,催化和药物输送。剑桥结构数据库(CSD)报告了10,636个合成的MOF晶体,此外还包含CA。114,373个类似MOF的结构。综合数量(加上可能合成的)MOF结构数量庞大,需要研究人员追求计算技术来筛选和分离MOF候选物。在此演示论文中,我们描述了我们在利用知识图方法方面促进MOF预测,发现和综合方面的努力。我们提出了有关(1)从结构化和非结构化来源构建MOF知识图(MOF-KG)的挑战和案例研究,以及(2)利用MOF-KG来发现新知识或缺失知识。
translated by 谷歌翻译
二进制恒星经历各种相互作用和进化阶段,对于预测和解释观察到的特性至关重要。具有完整恒星结构和进化模拟的二元种群合成在计算上需要大量的质量转移序列。最近开发的二元种群综合代码Posydon结合了梅萨二元星模拟的网格,然后将其插值以模拟大型大型二进制文件。计算高密度直线网格的传统方法对于高维网格,不可扩展,这是一系列金属性,旋转和偏心率的范围。我们提出了一种新的活跃学习算法PSY-CRI,该算法使用数据收集过程中的机器学习来适应和迭代选择目标模拟以运行,从而导致自定义,高性能的训练集。我们在玩具问题上测试PSY-CRIS,发现所得的训练集比常规或随机采样网格所需的模拟更少以进行准确的分类和回归。我们进一步将psy-cris应用于构建Mesa模拟动态网格的目标问题,我们证明,即使没有微调,仅$ \ sim 1/4 $的模拟集也足以足以达到相同的分类精度。当针对目标应用程序优化算法参数时,我们预计将进一步增益。我们发现,仅对分类进行优化可能会导致回归中的绩效损失,反之亦然。降低产生网格的计算成本将使Posydon的未来版本涵盖更多的输入参数,同时保留插值精度。
translated by 谷歌翻译
小规模过程的建模是气候模型中的主要误差来源,阻碍了低成本模型的准确性,必须通过参数化近似此类过程。红噪声对于许多操作参数化方案至关重要,有助于建模时间相关性。我们通过将随机性的已知好处与机器学习相结合,展示了如何基于红噪声的成功。这是在概率框架内使用物理信息的复发性神经网络完成的。当应用于Lorenz 96大气模拟时,我们的模型具有竞争力,通常优于定制基线和现有的概率机器学习方法(GAN)。这是由于其与标准一阶自回旋方案相比,它具有较高的时间模式的能力。这也是看不见的场景。我们评估了文献中的许多指标,还讨论了使用持有可能性的概率度量的好处。
translated by 谷歌翻译
从2D图像重建3D对象对于我们的大脑和机器学习算法都有挑战。为了支持此空间推理任务,有关对象整体形状的上下文信息至关重要。但是,此类信息不会通过既定的损失条款(例如骰子损失)捕获。我们建议通过在重建损失中包括多尺度拓扑特征,例如连接的组件,周期和空隙来补充几何形状信息。我们的方法使用立方复合物来计算3D体积数据的拓扑特征,并采用最佳传输距离来指导重建过程。这种拓扑感知的损失是完全可区分的,在计算上有效,并且可以添加到任何神经网络中。我们通过将损失纳入SHAPR来证明我们的损失的实用性,该模型用于根据2D显微镜图像预测单个细胞的3D细胞形状。使用利用单个对象的几何信息和拓扑信息来评估其形状的混合损失,我们发现拓扑信息大大提高了重建质量,从而突出了其从图像数据集中提取更多相关特征的能力。
translated by 谷歌翻译
了解潮汐能流中鱼类的丰度和分布对于评估通过向栖息地引入潮汐能设备所带来的风险很重要。但是,适合潮汐能的潮汐电流流量通常是高度湍流的,这使回声器数据的解释变得复杂。必须从用于生物分析的数据中排除受夹带空气回报污染的水柱的部分。应用单个常规算法来识别夹带的空气的深度不足,对于不连续,深度动态,多孔的边界而言,随着潮流流速而变化。使用Fundy湾的潮汐能示威场所进行的案例研究,我们描述了具有基于U-NET的体系结构的深机学习模型的开发和应用。我们的模型Echofilter对湍流条件的动态范围高度响应,并且对边界位置的细微差别敏感,产生了夹带的空气边界线,在移动下降方面的平均误差为0.33亿,并且在移动下降范围内为0.5-1.5-1.0m关于固定的上调数据,不到现有算法解决方案的一半。该模型的整体注释与人类细分有很高的一致性,移动下降记录的联合会得分为99%,而固定的上方录音记录为92-95%。与手动编辑当前可用算法所需的线路位置所需的时间相比,手动编辑所需的时间减少了50%。由于最初的自动放置的改进,模型的实现允许提高线路位置的标准化和可重复性。
translated by 谷歌翻译
荧光显微镜是一直是观察胚胎(体内)生长的长期成像随时间的重要工具。然而,累积暴露是对如此敏感的实时样本的光毒性。虽然像光片荧光显微镜(LSFM)这样的技术允许减少曝光,但它不太适用于深度成像模型。其他计算技术是计算昂贵的并且通常缺乏恢复质量。为了解决这一挑战,可以使用各种低剂量成像技术来实现使用轴向(Z轴)的少量切片实现3D体积重建;但是,它们通常缺乏恢复质量。而且,在轴向上获取致密图像(具有小步骤)是计算昂贵的。为了解决这一挑战,我们介绍了一种基于压缩的感测(CS)方法来完全重建具有相同信噪比(SNR)的3D卷,其具有小于励磁剂量的一半。我们展示了该理论并通过实验验证了这种方法。为了证明我们的技术,我们在斑马鱼胚脊髓(30um厚度)中捕获RFP标记神经元的3D体积,使用共聚焦显微镜轴向采样0.1um。从结果中,我们观察到基于CS的方法从整个堆叠光学部分的小于20%的高于20%实现精确的3D体积重建。在该工作中的开发的基于CS的方法可以容易地应用于其他深度成像模态,例如双光子和光板显微镜,其中还原样品毒性是一个关键挑战。
translated by 谷歌翻译
锂离子电池(LIBS)的数学建模是先进电池管理中的主要挑战。本文提出了两个新的框架,将基于机器的基于机器的模型集成,以实现LIBS的高精度建模。该框架的特征在于通知物理模型的状态信息的机器学习模型,从而实现物理和机器学习之间的深度集成。基于框架,通过将电化学模型和等效电路模型分别与前馈神经网络组合,构造了一系列混合模型。混合模型在结构中相对令人惊讶,可以在广泛的C速率下提供相当大的预测精度,如广泛的模拟和实验所示。该研究进一步扩展以进行衰老感知混合建模,导致杂交模型意识到意识到健康状态以进行预测。实验表明,该模型在整个Lib的循环寿命中具有很高的预测精度。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译